Long-Term Central Venous Access in the Oncology Patient

Diane G. Cope, PhD, ARNP, BC, AOCNP Oncology Nurse Practitioner Florida Cancer Specialists and Research Institute Fort Myers, Florida

Objectives

 Identify factors that increase risk of infusion therapy complications for oncology patients

 Describe two strategies to maintain LTCVA for oncology patients

Central Venous Access Devices in Oncology

Indications for LTCVA in Oncology

- Medications and Oncologic Treatments
- Frequency, delivery, and duration
- Vein status
- Contrast media
- Transfusional needs
- Blood specimens
- Transplant candidate
- Patient preference

Povoski, 2014

Device and Patient Selection

- Treatment Regimen
 - Agent
 - Cancer diagnosis
 - Schedule
 - Patient
 - Social support

Vesicants and Irritants

Vesicants

Amascrine Carmustine Cisplatin Dactinomycin Daunorubicin Docetaxel Doxurubicin Epirubicin Idarubicin Mitomycin Oxaliplatin Paclitaxel Vinblastine Vincristine Vinorelbine

<u>Irritants</u>

Bendamustine Bleomycin Bortezemab Carboplatin Cyclophosphamide Fluouracil Etoposide Gemcitabine Irinotecan Mitoxantrone Topotecan

Chemotherapy Agent

Chemotherapy Agent

Vein Status Age and Cancer

Catheter and Infusion Complications in the Oncology Patient

Pneumothorax Hemothorax SQ hematomas Catheter tip malposition Catheter fracture Drug extravasation Venous thrombosis Infection

Central Line-Associated Blood Stream Infections

- Costly
- Potentially life threatening
- Extended hospital stays
- Treatment delays

Common Definitions

- Systemic:
 - Catheter-related bloodstream infection CRBSI
 - Central line associated bloodstream infection CLRBSI
- Local:
 - Insertion site
 - Port pocket
 - Tunnel

O'Grady, 2011; Shah, 2013

Etiology of CLABSI

- Contamination on insertion
- Contamination of hub or catheter by hands, fluids, devices
- Hematogenous seeding
- Contamination of infusate
- Catheter material

Oncologic Risk Factors for CLABSI

- Patient status
 - Neutropenic
 - Immunocompromised
 - Poor wound healing
- Fibrin sheath or thrombus formation

VAD Infections and Symptoms

- Local/Tunnel/Port Pocket:
 - swelling, tenderness, erythema, drainage

Treatment of VAD Infection

- Daily documentation of site assessment
- Local:
 - Clean area chlorhexidine
 - Apply sterile gauze and tape dressing daily
 - Warm compresses
 - PO/ IV antibiotics 10 to 14 days

Shah et al., 2013

VAD Infections and Symptoms

- Tunnel and port pocket infection
 - IV antibiotics
 - Usually removal of device

VAD Infection Symptoms and Diagnosis

- Systemic: fever, chills, diaphoresis, hypotension, mental status change
- Cultures:
 - VAD and percutaneous
 - Catheter tip
- Same organism from percutaneous and catheter tip
- Same organism from percutaneous and catheter blood culture

Common Organisms

- Coagulase-negative staphylococci
- Staphylococcus aureus
- Candida species
- Enterococci species

•

Treatment of VAD Infection

- Systemic Infection
 - Administer IV antibiotics
 - Rotate lumens for multi-lumen catheters
 - Antibiotic lock technique
 - Thrombolytic therapy

Schiffer et al., 2013; Shah et al., 2013

VAD Removal for Infection

- Persistent or recurrent tunnel infection
- Fungus, gram-negative bacilli, *S aureus*, entercoccus, yeast
- Persistent symptoms of infection after antibiotics
- Confirmed VAD sepsis

Schiffer et al., 2013; Shah et al., 2013

Prevention of Central Line-Associated BSI

- Incorporate central line insertion bundle
 - Hand washing before and after care
 - Maximal barrier precautions upon insertion
 - Optimal catheter site selection
 - Chlorhexidine skin antisepsis
 - Removal of line if not needed

Prevention of Central Line-Associated BSI

- Consistent maintenance procedures
- Strict sterile/aseptic technique
- Alcohol decontamination prior to hub access
- Routine surveillance for infection rates
- Patient and caregiver education
- Monitor patients with co-morbid diseases closely

VAD Infection Summary

- Variability exists in VAD practice
- Standardized evidence based interventions are needed
- Meticulous aseptic/sterile technique vital

Catheter Occlusion

- Incidence: 41% of central venous catheters
- Interruption of therapy
- Infiltration or extravasation
- Infection
- Increased cost of treatment
- Patient trauma, emotional distress

(Camp-Sorrell, 2010)

Types of Catheter Occlusions

- Thrombotic (58%)

 Clot or thrombus within or around device or in surrounding vessel
- Multi-factorial

(Gorski et al., 2010)

Patient-related Risk Factors for Thrombus

Change or trauma to vessel wall

Change in blood flow

Increased blood coagulability

Falanga, 2011

Traumatic insertion/catheter malposition Long duration of catheter use Hypertension Dehydration Diminished activity/bed rest Hypotension Atrial fibrillation Tumor Inflammatory disease Chronic renal failure Sepsis Malignancy

Catheter-related Risk Factors for Thrombus

- Catheter size
- Catheter tip malposition
- Left-sided insertion
- Duration of catheter use
- Improper maintenance

Schiffer et al., 2013

Catheter-related Thrombus Formation

- Catheter insertion
 - Initiates biofilm/fibrin layer formation
 - Blood on catheter surface forms fibrin layer
 - Catheter colonized by pathogens in biofilm
 - Bacteria produce barrier to normal defenses

Fibrin tail allowing infusion

Beginning to flap back with start of withdrawal

Blocking aspiration of the catheter

Fibrin tail

Fibrin sheath

Mural thrombus

Intraluminal thrombus 2015 National Academy of Infusion Therapy Dallas, TX-November 6-8

- Fibrin Tail
 - Formed on every catheter at time of insertion
- Fibrin Sheath
 - Fibrin covers catheter like a "sock" and may extend back to the point where the catheter enters the vein
 - May or may not function

- Mural Thrombus
- Fibrin from vessel wall injury binds to fibrin covering catheter surface
- Contributing factors
- Endothelial injury:
 - Catheter tip causes injury:
 - insertion or malpositioned tip
- Altered blood flow:
 - Presence of catheter in vein

- Intraluminal Thrombus
- Thrombi form within the catheter lumen
- Causes:
- Pump malfunction
- Inadequate flushing
- Withdrawing blood
- Inadvertent line disconnection
- Retrograde blood flow due to increased intrathoracic pressure

Port Thrombus

Buildup of blood in port chamber/catheter

Catheter Related Thrombosis

- Thrombotic
 - Lack of free-flowing blood return
 - Inability to infuse
 - Increased resistance
 - Sluggish flow
 - Early signs and
 symptoms: swelling,
 pain, discoloration,
 distended veins

Catheter-related Thrombosis Treatment

- Catheter removal?
- Symptomatic
 - Length of treatment
 - Treatment options

Types of Occlusions

- Thrombotic
- Non-Thrombotic/Mechanical
- Partial:
 - Can infuse
 cannot
- Complete/Total:
 unable to aspirate

Types of Catheter Occlusions

- Non-thrombotic (42%)
 - Malpositioned tip
 - Pinch-off Syndrome
 - Other Mechanical
 - Infusate precipitate or residue

(INS, 2011)

Catheter Lumen Occlusion

- Biofilm
- Drug precipitate

Catheter Lumen Occlusion

- Biofilm
 - Starts at time of catheter insertion
 - Formed by organisms remaining on skin after antisepsis
 - During infusions
 - Tubing or cap changes
 - Medication administration
 - Flushing

Catheter Lumen Occlusion Biofilm

Dallas, TX-XNovember 6-8

Biofilm

- Less than 10 days: outer surface
- More than 30 days: inner surface
- Fibrin/thrombosis/biofilm Increased occlusion
- Aggressive flushing besis

Donlan, 2011

Drug Precipitate

- Incompatible medications or solutions infused into same catheter
- Risk for Precipitate
 - Acidic drugs: if pH increases
 - Alkaline drugs: if pH decreases
 - Lipid emulsions infusion

Common Drug Precipitates in Oncology

Drug	Cause	Precaution
Amphotericin B	Incompatible with saline	Flush before and after with dextrose
Diazepam	Poorly water soluble	Do not dilute; Consider Iorazepam
Fluorouracil	Droperidol	Flush before and after
Furosemide	Frequently incompatible	Flush before and after
Heparin	Meperidine Promethazine Gentamicin Tobramycin Amikacin Vancomycin	Flush residual drug with saline prior to heparin lock
VP-16	Weakly soluble	Flush before and after
Trissel, 2011		

Nursing Interventions: Drug Precipitate

- Watch for change in appearance
- Keep compatibility chart
- Check for incompatibilities with additives
- Don't piggyback into parenteral nutrition lines

Best Practice: Drug Precipitate

In the absence of data confirming that two drugs are compatible,..... one must always assume "Incompatibility"

Catheter Occlusion Management

- t-PA (alteplase) therapy
- 2 mg/ml, wait 30 minutes, aspirate;
 may repeat (additional 90 minutes)
- 85% cases restored within hour
- Ideal concentration, volume, administration, dwell time, frequency without evidence base
- Radiographic imaging

Flushing Protocol Overview

Access Device	Flushing
Non-tunneled peripheral	NS 1-3ml q 8, 12, or 24 hours
Central	Heparin 100 units/ml, 3 ml/day or 2ml/day per each lumen
PICC	Heparin 10-100 units/ml, 3 ml/day or 3 ml/day three times/week
Tunneled	Heparin 10-100 units/ml, 3 ml/day; 3 ml qod; 5ml three times /week; or 5 ml weekly
Implanted port	Heparin 100 units/ml, 5 ml q 4-6 weeks and after use
Groshong	NS 5-10 ml weekly or after use

INS, 2010; ONS, 2011

Summary: Catheter Flushing

- Flushing protocols
 - Heparinized versus normal saline
 - Volume and frequency
 - Heparin use with risk of coagulopathies and HIT

Summary: Catheter Occlusion

- Be Safe!
 - Listen to the patient! Stop for any problems!
- Controversial issues:
 - t-PA therapy: ideal concentration, volume, administration, dwell time, frequency
 - Frequency of radiographic imaging
 - Infusion with no blood return
 - When to remove

Summary: LTCVA in the Patient with Cancer

Challenge, Complex, Caution

- Individualize to situation
- Proceed with safety
- Respond to every symptom and sign

